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Target localization and track initiation for any combination of

measurement components can be performed by solving systems

of simultaneous multivariate polynomials, utilizing cubature inte-

gration for covariance estimates. The solutions are approximate

minimum mean squared error (MMSE) estimates. Measurement

components can be monostatic/bistatic range as well as direction

cosines, types of range-rate (Doppler), time delay of arrival (TDOA),

and measured frequencies. Combinations of different measurement

types are also considered. Results are compared to an approximate

Cramér-Rao lower bound (CRLB). No previous work has addressed

initial state estimation and localization in such a wide range of prob-

lems. Simulations include three specific problems that do not appear

to be solved anywhere in the literature.
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1. INTRODUCTION

In this paper, the general problem of starting a tar-

get track given a diverse mixture of monostatic/bistatic

range, time delay of arrival (TDOA), direction of ar-

rival (DOA), and various types of range-rate and/or fre-

quency measurements from multiple sensors, which are

not necessarily synchronized, is considered. The min-

imum amount of information needed to start a target

track is a target position estimate and an associated co-

variance matrix. More desirable, however, is a state es-

timate consisting of a position and velocity vector as

well as an associated covariance matrix.

No previous work has addressed initial state estima-

tion and localization in such a wide range of problems.

The track initiation approach in this paper express the

problem as a problem of solving a system of simul-

taneous multivariate polynomials. This expands upon

methods for localization in [66], [72] and Doppler-only

track initiation in [46]. It is shown that a measurement-

conversion approach to the problem is dramatically less

computationally demanding than a least-squares solu-

tion. Moreover, the polynomial solutions are combined

with a cubature integration technique to obtain approx-

imate minimum mean squares error (MMSE) estimates

with associated covariance matrices. This use of cuba-

ture integration for unbiased estimation and covariance

matrix approximation fills a gap in the literature as most

similar polynomial-based methods such as those in [46],

[66], [72] do not consider covariance matrix estimation

at all, making them unsuitable for use with many com-

mon tracking algorithms. This paper only considers the

use of measurements after detection, as many practi-

cal networks will not always have sufficient bandwidth

to send the raw or filtered antenna outputs to a fusion

center. The work here can be viewed as a prerequisite

for formulating a cost function for associating a diverse

mixture of measurements between sensors.

The ability to start a track–to obtain a (hopefully

unbiased) mean and a consistent covariance matrix or

possibly a Gaussian mixture to represent the position

or state (position, velocity, etc.) of a target given a set

of measurements–is a necessary part of any target-

tracking algorithm. Though active radar and sonar sys-

tems might be able to provide full 3D range and DOA

measurements, a great many applications will offer a

larger diversity of measurements.1

Additionally, the demand for starting tracks using

diverse measurement types is likely to increase with the

proliferation of digital multifunction radars. Many such

systems can work in both active and passive modes, as

1For example, numerous countries are requiring that cell phone carri-

ers be able to localize users to high accuracies and cell towers typically

do not measure DOA. In the United States, the FCC is requiring a 50 m

horizontal localization accuracy [30]. Similarly, aviation authorities in

the United States [29] and the European Union [28] have been im-

plementing passive tracking systems (via multilateration [DOA-only])

for civilian aircraft to augment transponder data from aircraft.
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one can see by searching through radars in Jane’s On-

line [37]. As digital radars are able to form increasingly

many simultaneous receive beams, one would expect

that a radar network would produce a greater diversity

of measurements to use for target track initiation.

Much of the literature for target tracking using a

diversity of measurements (not just range and DOA)

tends to focus on using only one or two types of mea-

surements and usually either try to find an explicit con-

version for simultaneous measurements from the mea-

surement domain into the domain of the state, or they

perform some type of exact or approximate maximum

likelihood (ML) or least squares (LS) estimation using

various techniques depending on how difficult the prob-

lem is. For example, when considering Doppler-only

tracking of an emitter, an explicit solution is available

for the position and velocity of the emitter in a spe-

cific 2D scenario [71]. Additionally, a large number of

2D or 3D position and velocity estimation algorithms

use a brute-force grid search of some type such as in

[1], [16]—[18], [34], [40]—[42], [44] and (in Turkish)

[43] or a grid search plus a refinement step as in [15],

[39], [51]. In [47] an approximate global optimization

is attempted using the (not optimal) Nelder-Mead algo-

rithm.2 A few authors tackle the problem using semidef-

inite programming in [50], [57] (which can be subject

to finite-precision errors), while others try to integrate

the initiation and detection directly into the tracking al-

gorithms using particle filters, or Gaussian mixtures and

linearization methods coupled with random finite set

theory [33], [49], [54], [58], (such papers focus on the

bistatic Doppler case and tend to be very complicated).

A couple of papers solve systems of simultaneous mul-

tivariate polynomials as in [45], [46], [60], [61]. Similar

approaches are used for other measurement types. This

paper focusses on the final approach: utilizing simul-

taneous multivariate polynomials for target localization

and/or target-state estimation, but with a diverse mixture

of not necessarily simultaneous measurements.

The task of solving systems of simultaneous mul-

tivariate polynomials for localization and/or target-state

estimation is not just limited to Doppler-only estimation,

as in [45], [46], [61]. Such an approach is also suggested

for solving time of arrival (TOA)-only, TDOA-only, and

DOA-only localization problems in [66] as well as for

solving TDOA-only estimation problems in [72].

The basic idea behind the track initiation techniques

in this paper is similar to that in [26]: An estimator is ob-

tained that provides an error-free estimate in the absence

of noise (in this case by solving a system of simulta-

neous multivariate polynomials). Given noisy measure-

ments, the mean and covariance matrix of the estimator

(as obtained via cubature integration) is used as a mean

2It is worth noting that the dividing rectangles (DIRECT) algorithm of

[38] can be used for globally optimal optimization without the same

possibility of getting stuck at a suboptimal point as in the Nelder-

Mead algorithm.

and covariance matrix for target track initiation. The

assumption is that the estimator is unbiased, so that the

covariance matrix is an accurate representation of the

mean squares error (MSE) of the estimate.

Section 2 describes the measurement models used

in this paper. A basic assumption in this paper, and in

the tracking literature in general, is that measurements

are corrupted with Gaussian noise in the measurement

domain (not in global Cartesian coordinates), where it

is noted that all measurement types can be expressed

as multivariate polynomials, sometimes with the help

of additional variables. Section 3 then reviews basic as-

pects of cubature integration, which plays a pivotal role

in obtaining unbiased estimates and covariance matri-

ces for the estimates. Using cubature integration, one

can evaluate the integrals necessary for determining the

Cramér-Rao lower bound (CRLB), which is described

in Section 4. The CRLB can often be used to deter-

mine whether combinations of measurements of differ-

ent types from various sensors might be able to produce

usable estimates (sufficiently accurate) without having

to run Monte Carlo simulations.

Section 5 discusses algorithms for solving simulta-

neous multivariate polynomials. Available solvers are

fast for many practical problems, and are even faster

with parallelization. In some instances, one might use

a “track-initiation” routine like in this paper to fuse

passive measurements before passing them to a target-

tracking algorithm, (i.e. via track function or by treating

the fused measurements as a single “measurement”). If

in such an instance, one finds that the track-initiation

algorithm is slightly too slow for real-time use, it is

worth noting that the delayed tracks/ measurements can

be treated as out-of-sequence measurements, and meth-

ods for making use of such measurements in Kalman

filters [3], [62], [74], interacting multiple model filters

(IMMs) [2], and particle filters [11], [52], among many

others, exist.

Section 6 discusses the use of 2D assignment algo-

rithms for clustering estimates. This algorithm is needed

to handle instances in Sections 7 and 1 where multiple

solutions are obtained.

Section 7 combines the results of the previous sec-

tions to provide the efficient measurement-conversion

algorithm that is the main topic of this paper. The al-

gorithm tries to find the expected value of the target

state (or just target position) given the minimal set of

measurements needed to make the state or position ob-

servable. Multivariate polynomial expressions to han-

dle many different scenarios are provided and simu-

lations demonstrate the effectiveness of the estimation

algorithm for three localization scenarios that are not

currently present in the literature.

As in [66], it is also possible to perform track initi-

ation with redundant information using ML/LS track-

initiation routines. Section 1 discusses how this can
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be done in general. However, the computational com-

plexity is significantly higher than the measurement-

conversion approach. Hope at real-time use of such

methods necessitates more efficient multivariate poly-

nomial solving routines than are used in this paper. The

results are summarized in Section 9.

In [23] and [24] target track initiation given bistatic

range and DOA measurements in without and with the

effects of atmospheric refraction are considered. This

paper solves track initiation and localization problems

using a wider variety of measurements than are present

in the literature, producing approximate MMSE esti-

mates and covariance matrices. However, the effects of

atmospheric refraction are neglected, though the results

of this paper are still useful. When refractive effects

matter, the estimates produced by the algorithms in this

paper can be used as initial estimates in iterative al-

gorithms with refraction, and the systems of equations

derived in (5) can be used as start systems in homotopy

algorithms for solving more difficult problems involv-

ing refraction. One type of homotopy solver is given

in [26].

2. THE MEASUREMENT MODELS

The measurements considered in this paper are

transformations of the target state x. The measurements
are assumed to be of the form

Ẑ= h(x,w) (1)

where w is a Gaussian random variable corrupting the

measurement and h is a deterministic function. Though

most results of this paper can be used with non-additive

noise, in all simulation examples presented here, it is

assumed that the measurement noise is additive, so (1)

can be reduced to

Ẑ= h(x) +w (2)

If h is bijective (invertible) with respect to x and Ẑ

such that there exists an inverse function x= h¡1(Ẑ,w),
then the measurement-conversion method of Section

7 should be used. Otherwise, the ML/LS method of

Section 8 can be used. The cubature routine used by

both is in Section 3.

An example of a bijective function would be the

transformation of a Cartesian position to range and di-

rection cosines. An example of a non-bijective function

would be the transformation of a Cartesian position to

three TDOAs. This transformation is non-bijective, be-

cause multiple solutions for a position can exist when

given an arbitrary set of TDOAs. However, Section 7

provides ad-hoc approaches to be able to handle the
case of having more than one or zero solutions.

In [23], expressions for the non-relativistic (Newto-

nian mechanics) bistatic range, range, rate, and DOA in

terms of direction cosines ignoring atmospheric effects

and target motion during the time it takes the signal to

travel from the transmitter to the target and then to the

receiver, are given and are used here. However, to be

able to use non-simultaneous measurements for track

initiation, a few minor changes are made.

Let x be the n-dimensional state of the target. The
state is assumed to contain at least position components.

Let H be a matrix such that Hx extracts the position
components of the state and Hv a matrix that extracts

any velocity components of the state (this is only needed

when considering range-rate/frequency-shift measure-

ments and a state with velocity components). For ex-

ample, when considering tracking in 3D, and one has

a state consisting of both position and velocity com-

ponents with position components coming first, then

H= [I3,3,03,3] and Hv = [03,3,I3,3] where I and 0 denote
identity and zero matrices of the given dimensions.

For purposes of track initiation using non-simul-

taneous measurements, process noise in the dynamic

model of the target shall be ignored. Additionally, only

discrete-time dynamic models are considered. Let F be

an n£ n state transition matrix that propagates the tar-
get state from the time at which it is to be estimated to

the time of a measurement. State transition matrices for

some basic discrete-time dynamic models are provided

in [4, Ch. 6]. The product Fx is taken to be the target
state at the time of a measurement under consideration.

For example, if one has a 3D state with position compo-

nents before velocity components, then a standard lin-

ear propagation model just multiplies the velocity com-

ponents by the time interval of propagation, T, adding

them to the position components, so

F=

26666666664

1 0 0 T 0 0

0 1 0 0 T 0

0 0 1 0 0 T

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

37777777775
(3)

Note that T can be negative if one wishes to have a

target estimate at the end of a batch rather than at the

beginning. Define

Fh
¢
=HF (4)

Fv
¢
=HvF (5)

to simplify notation later on.

We shall now provide expressions for the compo-

nents of measurements considered in this paper. Mea-

surements may consist of one or more simultaneous

components, all of which will be considered to be

corrupted with (possibly correlated) additive Gaussian

noise. A bistatic range measurement without noise is

given by
rB = kFhx¡ l1k+ kFhx¡ l2k (6)

the l2 norm (the square root of the sum of the squares

of the components of the argument) is given by k : : :k,
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l1 is the Cartesian location of the transmitter, and l2
is the location of the receiver. A monostatic (round-

trip) range measurement would have l1 = l2. A TDOA

measurement between two sensors is very similar. In

such an instance, one can measure the time of arrival of

a signal at two sensors, time just being distance divided

by speed c. Thus, a TOA measurement at the ith sensor

would be

¿ =
1

c
kFhx¡ lik+ ¿0 (7)

where ¿0 is the unknown transmission time of the emit-

ter. A TDOA measurement thus cancels the unknown

transmission time resulting in

TDOA=
1

c
(kFhx¡ l1k¡kFhx¡ l2k) (8)

if Sensor 1 is used as the reference sensor.3

Another measurement type considered is DOA. Usu-

ally, as discussed in [23], it is preferable if direction

cosine measurements are used (when considering mea-

surements in 3D).4 The local coordinate system of the

receiver is aligned such that the third (unused) compo-

nent is normal to the surface of the receiver. As it is

assumed that the target is in “front” of the receiver, the

third component is not needed (it is assumed positive).

Let l be the 3£ 1 Cartesian location of the receiver. Let
M be a matrix that rotates a position vector from the

global coordinate system into the local coordinate sys-
tem of the receiver. Define Hu to be a 2£ 3 matrix that
extracts the u¡ v components from the rotated matrix.

For example, if as in [23], the z-axis is chosen to be

the one pointing out from the radar, and the position

components are in order (x,y,z), then

Hu =

·
1 0 0

0 1 0

¸
(9)

such that Huu is a vector containing the (x,y) compo-
nents of the unit vector u. Define

Mu =HuM (10)

Thus, a u¡ v direction cosine measurement u can be
written as

uuv =
1

kFhx¡ lk
Mu(Fhx¡ l) (11)

The final types of measurements that are to be

considered are related to the range-rate/Doppler shift

of the target. In [23], the non-relativistic (Newtonian

mechanics) bistatic range-rate (ignoring atmospheric

effects) of a target is given. For a receiver at l1 and

3Note that one does not always “measure” a TDOA. Often, two times

are measured and then the difference is taken. In such an instance, if

one assumes that each measurement is corrupted with Gaussian noise,

then the difference will also be Gaussian distributed and thus can be

treated as a single measurement.
4In 2D, this means that one component of a direction vector in the lo-

cal coordinate system of the receiver is used. However, for simplicity,

the discussion here only considers the 3D case.

transmitter at l2 traveling at velocities
_l1 and

_l2, the

bistatic range rate is

_r =

μ
Fhx¡ l1
kFhx¡ l1k

¶0
(Fvx¡ _l1)

+

μ
Fhx¡ l2
kFhx¡ l2k

¶0
(Fvx¡ _l2): (12)

If one is observing a range-rate measurement from a

transmitter, then the target is the transmitter and the

second half of the equation is eliminated, so the range

rate reduces to

_r =

μ
Fhx¡ l1
kFhx¡ l1k

¶0
(Fvx¡ _l1): (13)

Now, however, that range-rate measurements must

be derived from frequency offsets. If the transmitter

broadcasts at a frequency of fTx, the actual frequency

received due to Doppler shifts resulting from the given

range rate is [31, Ch. 34-6]5

f =

μ
1¡ _r

c

¶
fTx (14)

where c is the speed of propagation of the waves. How-

ever, if one is passively observing a target, then fTx will

be unknown. Thus, we shall also consider using the

ratio of received frequencies. That is, individual sen-

sors cannot measure “Doppler” or “range rate” because

the transmission frequency of the emitter is unknown.

Rather, they measure the (average) received signal fre-

quency. Based on (14), one can use the ratio of fre-
quency measurements from multiple sensors to help lo-

calize a target. For example, if one gets frequency mea-

surement at Sensors i and j, the frequency ratio is given

in (15).6

fi
fj
=
1¡ _ri

c

1¡
_rj

c

=
kFhx¡ ljk(Fhx¡ li)0(Fvx¡ _li)¡ ckFhx¡ likkFhx¡ ljk
kFhx¡ lik(Fhx¡ lj)0(Fvx¡ _lj)¡ ckFhx¡ likkFhx¡ ljk

(15)

All of the above measurement models along with

the frequency ratio are not polynomial even though the

point of this paper is that one can use multivariate poly-

nomial solving routines along with cubature integration

5This is under Newtonian mechanics, meaning that the range rate is

far lower than the speed of light.
6Note that one typically needs many digits of precision to make

good use of frequency measurements. As another example, a radio

emitter moving at a range rate of 10 m/s causes a 2 GHz transmis-

sion frequency to shift by less than 67 Hz. That is a shift of about

3:3£ 10¡6%. Frequency ratios are generally never measured. Rather,
individual frequencies are measured (and can be approximated as

being corrupted by additive Gaussian noise–an approximation that

would probably be very bad for the ratio).
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to obtain mean and covariance estimates to start target

tracks. However, all of them can be made polynomial

either by manipulating the equations as in Section 7

for the measurement-conversion approach, or through

the introduction of additional variables/equations, as is

suggested in Section 8 for LS estimation. For example, a

term of the form kFhx¡ lik can be replaced by a variable
ri while adding the equation

r2i ¡kFhx¡ lik2 = 0, (16)

which is a polynomial equation. Similarly, a term of the

form 1=kFhx¡ lik can be placed by a variable r̃i where
either

r̃2i kFhx¡ lik2¡1 = 0 (17)

or if ri is already needed,

r̃iri¡ 1 = 0: (18)

3. CUBATURE INTEGRATION FOR MEAN AND
COVARIANCE ESTIMATION

Given an estimator g(Z), we would like to obtain a
mean and covariance matrix for use in a target-tracking

algorithm. The basic idea in this paper is to use the

numerically computed mean and covariance matrix of

the estimator, assuming that the estimator is unbiased

and the covariance matrix is an accurate representation

of the actual target mean-squared error.

The mean and covariance matrix of an estimator

g(Z) are defined to be

x̂
¢
=Efg(Z) j Ẑg

=

Z
Z2RnM

g(Z)p(Z j Ẑ)dZ (19)

P= Ef(g(Z)¡ x̂)(g(Z)¡ x̂)0g

=

Z
Z2RnM

(g(Z)¡ x̂)(g(Z)¡ x̂)0p(Z j Ẑ)dZ (20)

where the stacked set of measurements is nM-dimen-

sional. The measurement is Ẑ and Z represents the

“noise-free” measurement. Under the assumption that

the conditional probability distribution function (PDF)

of the noise-free measurement is multivariate Gaussian

distributed with mean Ẑ and covariance matrix R the

integrals can be evaluated to a high precision with rel-

atively low computational cost using cubature integra-

tion.

As discussed in [23] with respect to target track-

ing and measurement conversion, cubature integration is

based on the fundamental theorem of Gaussian integra-

tion. Basically, the multivariate integral of a multivariate

function f(x) of an n-dimensional variable x, weighted
by a Gaussian PDF with mean ¹ and covariance matrix
§ can be evaluated exactly asZ

x2Rn
ffxgNfx;¹,§gdx=

NcX
i=0

!igf»ig, (21)

N is the multivariate normal evaluated at the first pa-

rameter, with mean and covariance matrix given by

the second and third parameters; and !i are cubature

weights and »i are n-dimensional cubature points. The
assumption for perfect equality is that f(x) is a mul-

tivariate polynomial function and the cubature points

and weights have been designed such that equality is

possible for all functions up to a certain degree. As the

solutions to simultaneous multivariate polynomials used

in this paper are not polynomials themselves, the use of

cubature integration is just an approximation. However,

if a high enough degree of precision is chosen, it can be

a very good approximation. The fundamental theorem

of Gaussian integration basically says that a suitable set

of cubature points and weights exists. Note that cuba-

ture formulae for weighting functions other than just the

normal distribution also exist.

Many tables of cubature points can be found in [65]

and an online collection of formulae is described in

[19] and found at http://nines.cs.kuleuven.be/ecf/. Mat-

lab code for generating cubature points and weights

of various degrees and dimensionalities is provided

as part of the Tracker Component Library online at

https://github.com/DavidFCrouse/Tracker-Component-

Library/. Formulae for cubature points used in the ex-

amples in this paper are given in Appendix B.

4. THE CRAMÉR-RAO LOWER BOUND

This paper offers multiple ways in which to assem-

ble estimation algorithms. However, it is not always

clear what combinations of measurement types might be

best or whether one has sensors that can even achieve

the needed accuracy to produce meaningful estimates

given a diversity of measurement types. The CRLB pro-

vides a lower bound on the attainable accuracy of an un-

biased estimator given a specific set of measurements,

without simulation. The integral involved in the CRLB

can be approximated using cubature integration as in

Section 3. The use of cubature integration for CRLB

computation is discussed in [23]. Here, we review the

basic idea and provide expressions needed for each of

the measurement types used.

As given in [4, Ch. 2.7.2], under certain regularity

conditions (which are expanded in [5]), the CRLB for

non-random vector parameters is given by the inverse

of the Fisher information matrix. Specifically,

Ef(x0¡ x̂fZg)(x0¡ x̂fZg)g ¸ J¡1 (22)

where x0 is the true value of the quantity being esti-

mated, Z is a set of observations, x̂fZg is an estimator
and J is the Fisher information matrix. The expected

value is over the conditional PDF of Z given x0. As the

inequality involves matrices, it has to be considered in

terms of the eigenvalues of the matrices. The trace of

the CRLB and be used as a lower bound on the MSE

of an unbiased estimator. If the Fisher Information ma-
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trix is singular, then the full state of the target is unob-

servable, even though individual components might be

observable.

For non-random vector parameters, the Fisher infor-

mation matrix is given by

J= Ef(rx lnp(Z j x))(rx lnp(Z j x)) j Zgjx=x0 (23)

=

Z
Z

(rx lnp(Z j x))(rx lnp(Z j x))jx=x0p(Z j x0)dz

(24)

where rx is the gradient operator with respect to x. It
creates a column vector of partial derivatives of its argu-

ment (here, lnp(Z j x)) with respect to the components
of x. Under the assumption that p(Z j x) is Gaussian, the
results in Section 3 can be used to numerically solve the

integrals.

Thus, to compute the CRLB for the examples in this

paper, the remaining part that must be determined is

rx lnp(Z j x). To simplify the analysis of the following
sections, it is assumed that the components of the mea-

surements used are independent. Under such an assump-

tion, the Fisher information matrix of multiple measure-

ments is just the sum of the Fisher information matrix

matrices for each individual measurement. However, it

can sometimes before more convenient to apply the in-

dependence assumption just to the gradient to get

rx lnp(Z j x) =
NX
i=1

rx lnp(zi j x) (25)

where zi is the ith measurement component. In the case
of a direction-cosine DOA measurement in 3D, we shall

take both components together. Thus, to consider the

combined effect of different measurement types, we

need but evaluate rx lnp(zi j x) for each measurement
type and sum them together. The rest of this section

provides expressions for these gradients.

4.1. Range Measurements

Assuming a bistatic range measurement of the form

in (6) corrupted with zero-mean Gaussian noise having

variance ¾2r , the logarithm of the likelihood is

lnp(uuv j x) =¡
1

2
ln(2¼¾2r )

¡ 1

2¾2r
(rB ¡kFhx¡ l1k¡kFhx¡ l2k)2

(26)

and thus the gradient necessary for the CRLB is

rx lnp(rB j x) =¡
1

¾2r
(rB ¡kFhx¡ l1k¡kFhx¡ l2k)

¢
μ
F0hl1¡F0hFhx
kFhx¡ l1k

+
F0hl2¡F0hFhx
kFhx¡ l2k

¶
(27)

4.2. TDOA Measurements

Assuming a TDOA measurement of the form in

(8) corrupted with zero-mean Gaussian noise having

variance ¾2TDOA, the logarithm of the likelihood is

lnp(uuv j x) =

¡ 1
2
ln(2¼¾2TDOA)

¡ 1

2¾2TDOA

μ
TDOA¡ 1

c
(kFhx¡ l1k¡kFhx¡ l2k)

¶2
(28)

and thus the gradient necessary for the CRLB is

rx lnp(TDOA j x)

=¡ 1

c¾2TDOA

μ
TDOA¡ 1

c
(kFhx¡ l1k¡kFhx¡ l2k)

¶
¢
μ
F0hl1¡F0hFhx
kFhx¡ l1k

¡ F
0
hl2¡F0hFhx
kFhx¡ l2k

¶
(29)

4.3. DOA Measurements

Assuming a DOA measurement of the form in (11),

which consists of two components corrupted with zero-

mean Gaussian noise having (symmetric) covariance

matrix Ruv, the logarithm of the likelihood is given

in (30).

lnp(uuv j x) =¡
1

2
ln(j2¼Ruvj)

¡ 1
2

μ
uuv ¡

1

kFhx¡ lk
Mu(Fhx¡ l)

¶0
¢R¡1uv

μ
uuv ¡

1

kFhx¡ lk
Mu(Fhx¡ l)

¶
(30)

=¡1
2
ln(j2¼Ruvj)¡

1

2
u0uvR

¡1
uv uuv

¡ 1

2kFhx¡ lk2
(x0F0h¡ l0)M0

uR
¡1
uvMu(Fhx¡ l)

+
1

kFhx¡ lk
(x0F0h¡ l0)M0

uR
¡1
uv uuv (31)

Thus, the gradient necessary for the CRLB is

rx lnp(uuv j x)

=
(x0F0h¡ l0)M0

uR
¡1
uvMu(Fhx¡ l)

kFhx¡ lk4
(F0hFhx¡F0hl)

¡ 1

kFhx¡ lk2
F0hM

0
uR

¡1
uvMu(Fhx¡ l) (32)

¡ (x
0F0h¡ l0)M0

uR
¡1
uv uuv

kFhx¡ lk3
(F0hFhx¡F0hl)

+
1

kFhx¡ lk
F0hM

0
uR

¡1
uv uuv (33)
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4.4. Emitter Range-Rate Measurements

Assuming an emitter range-rate measurement of the

form in (13) corrupted with zero-mean Gaussian noise

having variance ¾2_r , the logarithm of the likelihood

assuming that the emitter is stationary (the only case

considered in the examples) is

lnp(_r j x) =¡1
2
ln(2¼¾2_r )¡

1

2¾2_r

Ã
_r+

(Fhx¡ l1)0_l1
kFhx¡ l1k

!2
:

(34)

Thus, the gradient necessary for the CRLB is

rx lnp(_r j x) =
1

¾2_r

Ã
_r+

(Fhx¡ l1)0_l1
kFhx¡ l1k

!

¢
Ã

F0h
_l1

kFhx¡ l1k
+
(Fhx¡ l1)0_l1
kFhx¡ l1k3

(F0hl1¡F0hFhx)
!
:

(35)

4.5. Frequency (Ratio) Measurements

In this instance, the measurement components are

frequencies (e.g. single frequency tones or the center

frequencies of more complex signals) measured from

moving sensors, assuming a stationary emitter. Each

receiver will measure a different tone due to the Doppler

shift associated with its movement with respect to the

emitter.

Even though (15) provides an expression for the ra-

tio of two such frequencies, and Section 7.3.4 shows

how to create multivariate polynomial equations that

(with others) can be used to localize such an emitter.

It is easier to compute the CRLB from the individual

frequencies, which will presumably be the actual mea-

surements, rather than the ratio. Similarly, the cubature

integration in Section 3 when used to estimate the mo-

ments of the converted measurements would have to be

done using the actual frequencies rather than the ratio

as it cannot be assumed that the ratio is Gaussian dis-

tributed.

However, if the individual frequencies are used, then

the unknown transmit frequency fTx must be added to

the “state” for purposes of estimating the CRLB. Thus,

in this section, we provide the gradient with respect to

x, the typical state one would think of, as well as with
respect to fTx, which must be included just for purposes

of computing the CRLB.

Assuming a frequency measurement of the form in

(14) corrupted with zero-mean Gaussian noise having

variance ¾2f , the logarithm of the likelihood assuming

that the emitter is stationary is

lnp(f j x,fTx) =¡
1

2
ln(2¼¾2f)

¡ 1

2¾2f

μ
f¡
μ
1+

1

c

μ
Fhx¡ l1
kFhx¡ l1k

¶0
_l1

¶
fTx

¶2
(36)

Thus, the gradient with respect to the state x and the par-

tial derivative with respect to the unknown transmission

frequency fTx, necessary for the CRLB, are

rx lnp(f j x,fTx) =
fTx
c¾2f

μ
f¡
μ
1+

1

c

μ
Fhx¡ l1
kFhx¡ l1k

¶0
_l1

¶
fTx

¶

¢
Ã

F0h
_l1

kFhx¡ l1k
+
(Fhx¡ l1)0_l1
kFhx¡ l1k3

(F0hl1¡F0hFhx)
!
(37)

@

@fTx
lnp(f j x,fTx) =

1

¾2f

μ
f¡
μ
1+

1

c

μ
Fhx¡ l1
kFhx¡ l1k

¶0
_l1

¶
fTx

¶

¢
μ
1+

1

c

μ
Fhx¡ l1
kFhx¡ l1k

¶0
_l1

¶
(38)

5. SOLVING SIMULTANEOUS MULTIVARIATE
POLYNOMIALS

A key step in the track-initiation routines in this pa-

per is the solution of simultaneous multivariate poly-

nomial systems. Here, we are only interested in sys-

tems where all solutions are “zero dimensional.” Zero

dimensional solutions are individual points. The alterna-

tive, “positive-dimensional” solutions, represent curves,

surfaces, volumes, etc., and thus represent an infinite

number of solutions. For example, the bivariate system

of polynomials

0 =¡1880+1176x¡ 240x2 +16x3¡ 1780y
+1156xy¡ 240x2y+16x3y¡ 420y2 +284xy2

¡ 60x2y2 +4x3y2 (39)

0 = 1974¡ 1780x+578x2¡ 80x3 +4x4

+882y¡ 840xy+284x2y¡ 40x3y+2x4y (40)

has two zero-dimensional solutions, (3,¡2) and (7,¡2),
as well as one positive dimensional solution,

y =
¡47+20x¡ 2x2
21¡ 10x+ x2 (41)

Though positive dimensional solutions can be numeri-

cally investigated using tools such as Bertini real [12],

available from http://bertinireal.com, which relies on

Bertini [8], available from https://bertini.nd.edu, only

unique solutions are of interest here.

Many believe that solving even moderate-sized mul-

tivariate polynomial systems is too computationally de-

manding. This is true if one uses the oldest algorithms,

which are based on the computation of Gröbner bases,
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which arise in the field of abstract algebra.7 However,

the field of numerical algebraic geometry has produced

better techniques.

The field of algebraic geometry studies the zeros

of multivariate polynomials. Of interest to engineers is

the related field of numerical algebraic geometry, which

studies numerical techniques for finding the roots of

multivariate polynomial systems.8 A number of meth-

ods of solving simultaneous multivariate polynomials

exist in the literature. Notable ones are:

1) Utilizing a standard homotopy algorithm in the com-

plex domain. Such an algorithm uses a start polyno-

mial system g(x) with known zeros to solve the de-
sired polynomial system f(x). It does this by writing
differential equations in terms of a “helper” variable

of some sort. For example, a linear homotopy will

often have the form

0 = °(1¡¸)g(x)+¸f(x) (42)

where ¸ starts at 0 and is integrated to 1 (sometimes

1¡¸ is used instead of ¸) and ° is a random com-

plex number. The choice of the start system as well

as the type of homotopy and the ability to deal with

finite-precision errors and “path jumping” makes this

a difficult problem. Algorithms to solve this problem

tend to be broken into two categories: practical nu-

merical algorithms, which tend to use adaptive step

sizes, and primarily theoretical algorithms that guar-

antee global convergence with a hard bound on the

number of steps, but which often fail in practice as

their proofs assume unlimited numerical precision.

Notable open-source, practical algorithms include

² Bertini, which is online at https://bertini.nd.edu
and is well-documented in the book [8]. An inter-

face for Matlab is described in [7] and is available

for download from http://www.mathworks.com/

matlabcentral/fileexchange/48536-bertinilab.

Version 1.5 of the software is written in C. Ver-

sion 2 is under development in C++. Version 1.5

of the program is used in the examples in this

paper.

² PHCpack, which is available online at http://

homepages.math.uic.edu/ ˜ jan/download.html is

documented in [67] and also online at http://

homepages.math.uic.edu/ ˜ jan/phcpack doc html

/index.html and which includes a Matlab inter-

face, which is documented in [32]. The soft-

ware is written in Ada. As Ada is not com-

monly used, it is worth noting that free and

7An introduction to Gröbner bases is given in [13] and notes that

examples of Gröbner basis computations for polynomials in three or

four variables may fail to terminate in a reasonable amount of time

or may exceed the available memory of a computer.
8An introduction to the field is given in [63]. An introduction to some

of the most common practical and theoretical aspects of the area can

be found in the book documenting the Bertini solver [8] and in Part

III of [14].

commercial Ada compilers can be obtained from

http://libre.adacore.com. Version 2.4.14 of the

program is used in the examples in this paper.

² HomLab, which is online at https://www3.nd.
edu/ ˜ cwample1/HomLab/main.html. The solver

is not entirely free as the terms of the license

require that one purchase the associated book

[64]. The software is written in Matlab. It is not

used in the examples in this paper.

The less practical but more theoretically “nice” ho-

motopy algorithms for solving simultaneous multi-

variate polynomials are “certified” algorithms. Being

certified assures convergence to an exact solution as-

suming infinite precision algebra. The first such al-

gorithm is described in [10], though one might wish

to consult the book [14] to fully understand the req-

uisite math used.

2) A different type of homotopy algorithm is the “prob-

ability 1” homotopy. This type of algorithm can

be used both for polynomial and non-polynomial

systems. It is used for difficult polynomial and

non-polynomial target-track-initiation problems in

[26], though the results there must be considered as

heuristic as the implementation in [26] does not trace

its paths in the complex domain and the proofs for

the “probability 1” success of the algorithm are only

valid in the complex domain.9 Probability 1 homo-

topy algorithms for solving polynomials were not

used in this paper as later literature indicates that it

is inferior to newer homotopy algorithms.

3) Transforming the problem of solving multivariate

polynomials into a generalized eigenvalue problem

through the use of Sylvester or Macaulay matrices

to get all real and complex solutions. This method

is used in [72] for TDOA-only estimation. A very

understandable description of such an approach is

in [27].10

4) All of the previous algorithms find all real and com-

plex solutions to simultaneous multivariate polyno-

mials. An alternative method is the Khovanskii-Rolle

continuation for real solutions described in [9], for

which an implementation in Maple is available on-

line at https://www3.nd.edu/ ˜ dbates1/Rolle/. The al-

gorithm is appealing as it could, in theory, be sig-

nificantly faster than methods that must search the

entire real and complex space. However, the cur-

9Implementations of such probability 1 algorithms for polynomials

are described in [69], [70], [73] and the source code associated with

those papers is available in Fortran at http://netlib.org/toms/.
10A more efficient implementation of such an approach, “A Maple/

Matlab/C Resultant-Based Solver,” is documented in [68] and avail-

able online at http://gamma.cs.unc.edu/MARS/. The algorithm is im-

plemented in a combination of Maple, Matlab and C. The algorithm

depends on being able to accurately determine the rank of very large

sparse matrices, which can pose finite-precision issues. This algorithm

was not considered in the examples in this paper.
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rent version of the algorithm can only solve bivariate

polynomial systems.

Due to the time and difficulty in implementing a nu-

merically stable simultaneous multivariate polynomials

solver, this paper simply uses Bertini, PHCpack, and

the certified polynomial solver in Macaulay2.11 For the

simulations in this paper, all of the programs were (in-

efficiently) called from Matlab using scripts that wrote

input to disk, had the programs read the files, and wrote

their results to disk, which were then read back into

Matlab.

When using the solver algorithms, it will often be-

come necessary to shift and scale the equations so that

various convergence criteria become relatively scale in-

variant. In the simulations implemented for this paper,

this was done in three ways:

1) The mean sensor location was subtracted from all

sensor locations (and then added back to the estimate

in the end). This increases precision if, for example,

one is tracking in a coordinate system with the center

of the Earth as the origin, but all sensors are within

a small area on the surface.

2) The sensor locations are then scaled so that the most

distant sensor location has magnitude 1. Addition-

ally, the speed of propagation c used for TDOA

and frequency measurements is scaled accordingly.

Range measurements are also scaled. In the end be-

fore removing the mean sensor location shift, the

entire state vector must be scaled back.

3) After the equations are formed, the coefficients for

the equations are normalized so that the magnitude

of the largest coefficient is 1.

The complexity of these algorithms is related to the

number of zeros of the polynomial system that must

be found, which is related to Bézout’s theorem, given

in [14, Ch. 16.5]. Assuming that a polynomial system

has a finite number of solutions (no positive dimen-

sional solutions) Bézout’s theorem says that the maxi-

mum possible number of solutions equals the total de-

gree of the system. The degree of each equation in a

polynomial systems equals the degree of the highest

monomial term. Given a term consisting of a constant

times the product of variables of the form xa11 x
a2
2 : : :x

an
n

with a1,a2, : : : ,an > 0, the degree of the term is the prod-

uct a1a2 : : :an. This is the same definition used for the

degree or order of a polynomial equation when choosing

a cubature formula as in Section 3. The measurement-

conversion-based estimation method of Section 7 is sig-

nificantly faster than the ML based approach in Section

11All three polynomial solving routines used are open source, though

the terms of their licenses do not necessarily allow one to transfer

the desired subroutines into commercial radar software. However, all

of the solvers can be run as separate processes without any copyleft

clauses being forced into the calling program.

8, because Bézout’s number is much lower for equiva-

lent problems.12

In some simple instances, explicit solutions are

available, though there can sometimes be a minor loss

in precision compared to using a homotopy solver.

Appendix A demonstrates this by providing a direct

method of solving simultaneous bivariate equations and

showing that one loses a few digits of precision with the

direct solution versus using PHCpack, which is fixed

precision.

Finally, though the ML/LS solutions in Section 8 are

often too complex to solve in real time using standard

multivariate polynomial solvers, it is worth noting that

one can often find the value of the minimum, or an
approximation of it, very efficiently using semidefinite

programming. This is because the LS cost function

can be factored into a sum-of-squares polynomial, as

described in [56]. Related details on the theory are given

in [55].13

6. ASSIGNMENT OF MULTIPLE SOLUTIONS FOR
CLUSTERING
The cubature method of obtaining a mean and co-

variance matrix given multiple measurements outlined

in Section 3 is ignorant of the case where a finite num-

ber of solutions > 1 to the localization or state estima-

tion problem is possible. That is, when the evaluation of

gf»ig in (21) produces multiple solutions for each cuba-
ture point. In such an instance, if gf»ig always produces,
for example, two solutions, then In such an instance, one

might want to start a track with two hypotheses, one at

each location. However, one cannot put two solutions

into the integral (21) to obtain mean and covariance

components necessary to initialize a Kalman filter-like

algorithm. However, if one could associated which of

the solutions for each cubature point comes from the

same “hypothesis,” then one could evaluate the integrals

twice, once with each set of converted points.

This section presents a clustering algorithm for as-

sociating converted cubature points. The primary con-

tribution of this section is the formulation of an appro-

priate cost function that allows the clustering problem

to be expressed as a multidimensional assignment prob-

lem, which can be solved using already existing solvers.

A problem arises if one does not always find the

same number of solutions for every converted cubature

point. We shall assume that such an occurrence is un-

likely and will simply discard clusters that do not have

12In many instances, it is possible to accelerate the speed of the solvers

by solving a similar problem once, and then using the results to cre-

ate the best possible start system for the homotopy solver that can be

reused for many variants of the problem in question. That is, many

algorithms can take advantage of the so-called “cheater’s homotopy,”

described in [48]. The tool Paramotopy [6], which is available on-

line at http://www.paramotopy.com, can help parallelize the use of a

cheater’s homotopy to solve multiple variants of a particular problem.
13Free software for performing such an optimization is SOSTOOLS,

which can be downloaded from http://www.cds.caltech.edu/sostools/.
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a full set of points at the end of the assignment. In the

simulations, the failure rate for when the true target is

not in any cluster is computed to show that this is a rare

event.

To associate the solutions of converted cubature

points, we have to establish a cost function. One would

like to cluster solutions of converted cubature points

that are “close” together. However, one cannot simply

take the magnitude of the difference of the computed

points, which will generally represent target states, be-

cause the l2 norm of the difference will mix position

components having incompatible units (e.g. mix posi-

tion and velocity components). Thus, the solution cho-

sen here is to only perform the clustering using the

position components. Such an approach has also been

used in minimum mean-optimal subpattern assignment

(MMOSPA) algorithms for the display of uncertain tar-

gets as in [21], [22].

Assume that we are given a set of NC cubature points

»i with associated weights wi so as to perform numerical

integration as in (21). Define »̃i,s to be the sth solution
produced by the function gf»ig. Let the number of
solutions produced by the ith converted cubature point

be ÑC,i. It is assumed that all converted points produced

at least one solution or else the attempt at producing

any results from the integral in (21) fails. Let the matrix

H be such that H»̃i,s extracts the position components

of converted point »̃i,s. The pairwise cost function for
points is

d((i1,s1), (i2,s2))
¢
=

8><>:
kH»̃i1,s1 ¡H»̃i2,s2k i1 6= i2 and i2 6=Ø

1 i1 = i2

cmax i2 = Ø

(43)

where Ø represents an empty set (assigned to nothing)

and cmax is an upper bound for the allowable distance

between »̃i,s and anything one would consider assigning
it to. The1 costs say that we do not wish to assign two

converted points originating from the same »i together.
For simplicity, we assume that the cubature points are

ordered such that point i= 1 produces the least solu-

tions.

To start we will initially consider the case where

NC = 2 and then present two approaches to generalize

the results. To simplify things, we shall assume that

the cubature points are sorted such that »1 is the cu-

bature point that produced the most solutions. The two-

dimensional cost matrix is given in (44).

C
¢
=

266666666664

Assignment Costsz }| {
d((1,1),(2,1)) : : : d((1,1), (2,NC,2))

d((1,2),(2,1)) : : : d((1,2), (2,NC,2))

...
. . .

...

d((1,NC,1), (2,1)) : : : d((1,NC,1), (2,NC,2))

Non-Assignment Costsz }| {
d((1,1),Ø) 1 : : : 1

1 d((2,1),Ø) : : : 1
...

...
. . .

...

1 1 : : : d((NC,1),1),Ø)

377777777775
(44)

Let the cost value in row i and column j of the cost

matrix be ci,j . The 2D assignment problem for clustering

with NC = 2 is

X¤ = argmin
X

NC,1X
i=1

NC,2+NC,1X
j=1

ci,jxi,j (45)

subject to

NC,2X
j=1

xi,j = 1 8i

Every row is assigned to a column.

(46)
NC,1X
i=1

xi,j · 1 8j

Not every column is assigned to a row.

(47)
xi,j 2 f0,1g 8xi,j
Equivalent to xi,j ¸ 0 8i,j, (48)

where the matrix X is the set of all of the xi,j . If xi,j = 1,

then the item in row i is assigned to the item in column

j. Implicitly, the cost of not assigning a column to a row

is zero. This is a standard 2D assignment problem and

can be solved in strong polynomial time as described

in [20], where Matlab code is also provided in an

appendix.

The assignment set X tells us which rows are as-

signed to which columns. Because the assigned pairs

always originate from different »i, they can be used in

(21) to get different estimates. If no pairs assign, then

there are no solutions. For the simulations in this pa-

per, we just assume that d((NC,1),1),Ø), so there is no

possibility of declaring two solutions too far apart to as-

sign. In such an instance, one can just reduce the upper

limit of the second cost function to NC,2. In the fol-

lowing discussion, it is assumed for simplicity that no

non-assignment costs are present.
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For NC = k cubature points, a natural extension of

the problem is (again letting »1 be the cubature point
with the fewest converted solutions),

X¤ = argmin
X

NC,1X
i1=1

NC,2X
i2=1

: : :

NC,kX
ik=1

ci1,i2,:::,ik xi1,i2,:::,ik (49)

subject to

NC,2X
i2=1

: : :

NC,kX
ik=1

xi1,i2,:::,ik = 1 8i (50)

NC,1X
i1=1

NC,3X
i3=1

: : :

NC,kX
ik=1

xi1,i2,:::,ik · 1 8j (51)

... (52)

NC,1X
i1=1

: : :

NC,k¡1X
ik¡1=1

xi1,i2,:::,ik · 1 8j (53)

xi1,i2,:::ik 2 f0,1g 8i1, i2, : : : , ik (54)

where the cost hyper-matrix, consisting of the elements

of ci1,i2,:::ik has yet to be specified. A particular value

ci1,i2,:::ik represents the cost of having »̃1,i1 , »̃2,i2 , : : : , »̃k,ik
in one cluster. One possible choice for the values of

ci1,i2,:::ik is the sum of all pairwise distances for cubature

points in a common cluster:

ci1,i2,:::ik =

NCX
n=1

NCX
m=n+1

kH»̃n,in ¡H»̃m,imk: (55)

Another option is to take the distance of the points from

their mean value, where here the “mean” value is the

weighted mean as would be used in the numeric integral

in (21)

ci1,i2,:::ik =

NCX
n=1

kH»̃n,in ¡H¹n,i1,i2,:::,ikk, (56)

where

¹n =

NCX
n=1

wn»̃n,in : (57)

Unfortunately, the optimization problem for Nc > 2

in (49) is a multiframe assignment problem, which is

NP complete [53, Ch. 15.7]. That means that no known

polynomial time algorithms exist to solve it, and it is

unlikely one will be found. Thus, as in [22] a low-

complexity approximation shall be used. This approx-

imation will produce globally optimal results if all of

the different solutions of the converted measurements

are far apart.

The approximate algorithm is just sequential 2D

assignment. The cubature points are arranged in order

of an increasing number of solutions. Then:

1) Create a cost matrix as in (44) and perform assign-

ment of solutions originating from »1 to those of »2.

2) Create a cost matrix as in (44) and perform assign-

ment of solutions originating from »2 that were as-
signed to those in »1 to those of »3.

3) Continue assigning solutions originating from »i that
were assigned to those in »i¡1 to those in »i+1 until
a complete set of assignments is obtained.

The above sequential algorithm is used in the sim-

ulations. One would expect it to bias the estimates if

multiple solutions are close together. Also, there are cer-

tain scenarios where one can, in theory, get bad results

depending on the reliability of the multivariate polyno-

mial solver. For example, suppose that a polynomial has

two solutions, but the solver only finds one. If it finds a

different solution for different cubature points, then the

final result can be useless. Note that other clustering al-

gorithms might also work, such as that used in contact

sifting for sonar in [35].

7. ESTIMATION VIA MEASUREMENT CONVERSION

This section describes the primary technique for

track initiation in this paper: using the minimum number

of measurement components needed for target observ-

ability, and inverting the measurement function. Com-

bined with the cubature moment estimation method of

Section 3 this provides the conditional mean and covari-

ance matrix of the target state given the measurements.

However, a heuristic approximation has to be made for

such an approach to be viable.

Section 7.1 describes the basic algorithm assuming

that the measurement function h in (1) is bijective. How-

ever, as demonstrated in Section 7.2, the measurement

function is generally not bijective. Thus, a heuristic al-

gorithms is used in practice, which deals with h having

no real solutions or multiple real solutions.

Subsection 7.3 provides expressions for estimating

the position of a target given bistatic range and/or

TDOA measurements. Assuming that the target is a sta-

tionary emitter and the receivers are mobile, expressions

for Doppler measurement and frequency ratios (usually,

the measurements are frequencies but the frequency ra-

tio is used in the inverse function) are also provided.

The use of frequency ratios for polynomial-based track

initiation appears to be new. Frequency ratio-based es-

timation of any type is not as prevalent in the literature.

It is used in an aircraft-tracking problem in the expired

patent [59]. The techniques in this section differ from

the polynomial-based localization methods of [66] as

the algorithms are not optimizing a LS cost function and

are thus significantly faster, though they cannot make

use of redundant information. Also note that [66] does

not provide any means of obtaining a covariance matrix

for the estimates. Simulations are provided showing the

performance of the estimator.

Subsection 7.4 then provides expressions for mea-

surement equations where the measurements are not all

simultaneous for reference. Bistatic range, TDOA, and

DOA are considered. It is also worth highlighting the
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Fig. 1. A monostatic range measurement in 2D defines a circle around a sensor. Depending on the target location, there can be 2 or 1

solutions, as in (a) and (b). However, if measurements are noisy, there can be no real solutions if one tries to invert the measurement into

Cartesian space as in (c). Conditioned on range measurements, the value of the noise that could be contained in the measurement must be

constrained so that the measurement, after accounting subtracting the noise, can be converted into a real solution in Cartesian coordinates.

(a) Two Real Solutions. (b) One Real Solution. (c) No Real Solutions.

special solutions [45], [46] for initiating a track consist-

ing of position and velocity in 3D given six simulta-

neous Doppler measurements (with stationary sensors).

Simulations are not given for this section, though the

correctness of the polynomial equations was verified by

solving a number of individual test cases.

7.1. The Measurement-Conversion Algorithm

Suppose that one would like to compute Efx j Ẑg,
where Ẑ is the set of all available measurements and

everything is in the real domain. This can be done by

evaluating the integral

Efx j Ẑg=
Z
x2Rn

xp(x j Ẑ)dx (58)

where p(x j Ẑ) is the conditional distribution of x given
Ẑ. Assume that the measurements have the form of (1)

and that the measurement function h is bijective. In such

an instance, using the total probability theorem, one can

write

p(x j Ẑ) = p(x jw)p(w)
= ±(x¡ h¡1(Ẑ,w))p(w) (59)

where ± represents the Dirac delta function. Assuming

that the noise w is also n-dimensional, (58) becomes

Efx j Ẑg=
Z
w2Rn

Z
x2Rn

x±(x¡ h¡1(Ẑ,w))p(w)dxdw
(60)

=

Z
w2Rn

h¡1(Ẑ,w)p(w)dw (61)

where the simplification comes from the fact that a def-

inite integral involving the Dirac delta function times

a function equals the function evaluated where the ar-

gument of the Dirac delta function is zero.14 For all

of the examples in this paper, the noise corrupting the

measurement is assumed to be additive as in (2). This

means that
x= h¡1(Ẑ¡w): (62)

Additionally, it is assumed that the noise corrupting the

measurements is distributed multivariate Gaussian with

14Note the addition of the extra integral over w in (60) made necessary

by the total probability theorem.

zero mean and covariance matrix R (which will be block

diagonal if the measurements are independent). Thus,

the integral in (61) can be simplified to

x̂= Efx j Ẑg=
Z
Z2Rn

h¡1(Z)NfZ; Ẑ,RgdZ (63)

where Nfa,b,cg represents the univariate or multivari-
ate normal distribution with mean b and covariance ma-

trix (or variance) c evaluated at point a. Thus, the esti-

mator here is the inverse of the measurement function,

and when using the cubature method of Section 3 with

a high enough degree set of cubature points, one ob-

tains the conditional mean and a conditional covariance

matrix can also be found.

Next the question arises how one constructs the

inverse measurement function h¡1. This is done by
formulating the expression for each measurement type

(TDOA, DOA, etc) within the measurement function

as a multivariate polynomial. Given enough, one can

solve the system using one of the off-the-shelf solvers

mentioned in Section 5. However, one will quickly

find that there are often no real solutions, or there

are multiple solutions to the polynomials. This violates

the assumption that h is bijective. Thus, the key to

the algorithm in this paper is the use of the following

heuristic approximation when no solutions are present.

Additionally, multiple solutions shall be clustered and

handled separately.

7.2. The Heuristic Approximation for Viability

Unfortunately,themeasurement-conversionapproach

described in the previous section usually fails. As an

example, consider the simple problem of estimating the

location of a target in two dimensions given (one-way)

monostatic range measurements from two sensors. For

simplicity, both sensors are assumed to be located on

the y-axis and each at a distance of lx from the origin.

Thus, the equations to be solved are

z1 =

q
(x¡ lx)2 + y2 (64)

z2 =

q
(x+ lx)

2 + y2 (65)
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Inverting the system of equations, one gets the two

solutions

x=
z22 ¡ z21
4lx

(66)

y =§ 1

4lx

q
8l2x(z

2
1 ¡ z22)¡ 16l4x (67)

These two solutions can either be unique, coincide,

or be imaginary. All three examples are illustrated in

Fig. 1. If the solutions are always real, then the 2D
assignment algorithm of Section 6 can be used to sort

each of the two solutions for the cubature points (in

the integrals in Section 7.1) into clusters and a separate

mean and covariance matrix can be found for each.

This also applies if only one solution is occasionally

obtained as that single solution is really two solutions

(a repeated root). For example, PHCpack will repeat a

solution when there is a repeated root.

However, even that somewhat heuristic approach

fails if there ever fails to be any real solutions. On

the other hand, a simple, heuristic fix is to compute

complex solutions that are “nearly” real, and discard the

imaginary part. In (66), it is clear that no matter how

the measurements z1 and z2 are perturbed, the resulting

x component will always be real. In (67), it can be seen

that if the true target has a y component close to 0, then

small perturbations in z1 and z2 will either slightly push

the solutions apart in y, cause them to come completely

together, or cause them to become imaginary. However,

if the perturbation makes the solutions imaginary, then it

can be seen that the real component of y is zero, which

is actually the LS real estimate (as seen in Fig. 1c, the

place where the two circles come closest for any fixed

value of x1. Thus, just computing the imaginary solution

and taking the real part works quite well.

Thus, the heuristic solution in this paper is to keep

some complex solutions, discarding the imaginary part,

and when computing the integrals in Section 7.1, cluster

multiple solutions to the measurement conversion as in

Section 6.

7.3. Equations for Static Estimation

This section provides equations for different mea-

surements types when localizing a target (or an emitter

in the case of the Doppler/frequency measurements).

The 2D or 3D target-location vector is denoted by t to

differentiate it from a full target state, which is consid-

ered in Section 7.4. It is noted how manipulations to

the equations might induce false solutions that must be

discarded when using certain measurement types. Sim-

ulation results then follow.

7.3.1. TDOA Measurements: The basic formulation

for solving TDOA measurement-conversion problems

using multivariate polynomial rooting is given in [72].

When considering TDOA measurements, the same gen-

eral procedure is used for the derivation, with a minor

correction to the sign used in the definition of y.

For a single received signal, let l1 be the Cartesian

location of the first receiver (in 2D or 3D) and l2 be the

Cartesian location of the second receiver. The model for

a TDOA measurement is

1

c
(kt¡ l1k¡kt¡ l2k) = TDOA (68)

where c is the speed of propagation in the medium.

Making the following substitutions

u=
1

2
(l1 + l

Rx
2 ) v=

1

2
(l1¡ l2) (69)

y= t¡u ± =
TDOAc

2
(70)

and substituting into (68), one gets

ky¡ vk¡ky+ vk= 2±: (71)

This can be turned into a polynomial by isolating ky¡
vk on one side, squaring the result, and then isolating
ky+ vk and squaring the result:
ky¡ vk2 = (2±+ ky+ vk)2 (72)

y0y+ v0v¡ 2y0v= 4±2 +4±ky+ vk+ y0y+ v0v+2y0v
(73)

y0v+ ±2 =¡±ky+ vk (74)

(y0v+ ±2)2 = ±2ky+ vk2 (75)

(y0v)2 + ±4 +2±2y0v= ±2(y0y+ v0v+2y0v) (76)

(y0v)2¡ ±2(y0y+ v0v)+ ±4 = 0: (77)

In order to solve the problem, one must substitute the

t values back in, because the y terms are different for

each equation in the polynomial system that must be

solved. Thus, one gets

((t¡u)0v)2¡ ±2(kt¡uk2 + kvk2)+ ±4 = 0 (78)

(t0v)2¡ ±2ktk2 + t0
l̃z }| {

(2±2u¡2(u0v)v)

+

c̃z }| {
(±4¡ ±2kvk2 + (u0v)2¡ ±2kuk2) = 0 (79)

In two dimensions, (78) expands in terms of monomi-

als to

0 = c̃+ l̃1t1 + l̃2t2 +2v1v2t1t2 + t
2
1(v1¡ ±)(v1 + ±)

+ t22(v2¡ ±)(v2 + ±) (80)

and in three dimensions, (78) expands to

0 = c̃+ l̃1t1 + l̃2t2 +2v1v2t1t2 + l̃3t3 +2v1v3t1t3

+2v2v3t2t3 + t
2
1(v1¡ ±)(v1 + ±)

+ t22(v2¡ ±)(v2 + ±) + t23(v3¡ ±)(v3 + ±) (81)
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The squaring of the equation to remove the square

roots can introduce false solutions. That is, solutions

where the TDOA computed from them is not equal to

the true TDOA. Consequently, an estimation algorithm

utilizing TDOA equations should look for such incon-

sistencies and discard extra solutions.

7.3.2. Bistatic Range Measurements: The procedure

for using bistatic range-only measurements is very sim-

ilar to that for using TDOA-only measurements. Let l1
be the location of the transmitter and l2 be the location

of the receiver. The measurement equation is

kt¡ l1k+ kt¡ l2k= r, (82)

which has essentially the same form as (68) for the

TDOA case, except the sign of one of the norms is

flipped. Hence, the problem can be solved in the same

manner. Define

u=
1

2
(l1 + l2) v=

1

2
(l1¡ l2) (83)

y= t¡u ± =
r

2
: (84)

Substituting into (82), one gets

ky¡ vk+ ky+ vk= 2±: (85)

This equation has the same form as (71), but with a

flipped sign on the second term. The simplification

proceeds as in Section 7.3.1:

ky¡ vk2 = (2±¡ky+ vk)2 (86)

y0y+ v0v¡ 2y0v= 4±2¡ 4±ky+ vk+ y0y+ v0v+2y0v
(87)

y0v+ ±2 = ±ky+ vk: (88)

The square of (88) has the same form as (75). The final

solution has the same form as (77):

(y0v)2¡ ±2(y0y+ v0v) + ±4 = 0: (89)

Substituting the t values back in, one gets (79), where

as in the TDOA case, the 2D and 3D simplifications are

(80) and (81), respectively.

The equations used for a range measurement are

the same as those for a TDOA measurement, except

the definitions of u, v, and ± are different. The same

equations apply for monostatic measurements. In such

an instance v= 0. Also, though there is squaring in

the range equations, no sign flips can occur as in the

TDOA case. Thus, bistatic range-only estimation will

often have more solutions than TDOA-only estimation.

7.3.3. Emitter Doppler Measurements: In this instance,

we are considering measuring the Doppler offset ob-

served by a moving receiver picking up a signal from a

stationary emitter that broadcasts at a known frequency.

Let l and _l be the location and velocity vectors of the

receiver. As discussed in the measurement model in Sec-

tion 2, the measured range rate simplifies to

_r =¡
μ
t¡ l
kt¡ lk

¶0
_l: (90)

This equation can be turned into a multivariate polyno-

mial as

(_rkt¡ lk)2 = (t0_l¡ l0_l)2 (91)

_r2(ktk2 + klk2¡ 2t0l) = (t0_l)2 + (l0_l)2¡2(t0_l)(l0_l):
(92)

Consequently, the final polynomial equation is

_r2ktk2¡ (t0_l)2 + t0
l̃z }| {

(2_l(l0_l)¡ 2_r2l)+
c̃z }| {

_r2klk2¡ (l0_l)2 = 0:
(93)

In two dimensions, (93) expands to

0 = c̃+ l̃1t1 + (_r
2¡ _l21)t21 + l̃2t2¡ 2_l1_l2t1t2 + (_r2¡ _l22)t22 :

(94)

In three dimensions, (93) expands to

0 = c̃+ l̃1t1 + (_r
2¡ _l21)t21 + l̃2t2¡ 2_l1_l2t1t2 + (_r2¡ _l22)t22

+ l̃3t3¡ 2_l1_l3t1t3¡ 2_l2_l3t2t3 + (_r2¡ _l23)t23 : (95)

The scaling method described in Section 5 is particu-

larly important when using Doppler measurements in

3D. Due to the squaring of the equations, one can also

expect there to be added solutions that must be elimi-

nated as described in Section 7.3.1.

7.3.4. Emitter Frequency-Ratio Measurements: In the

case of a stationary emitter, taking Sensor 1 in the nu-

merator, the measurement model in Section 2, simpli-

fies to

fRi,j =
rj(t¡ li)0_li+ crirj
ri(t¡ lj)0_lj + crirj

(96)

where the r terms are given by the polynomial equation

r2i = kt¡ lRxi k2 = ktk2 + klik2¡ 2t0li: (97)

Equation (96) can be written as a polynomial that must

be zeroed as

0 = fRi,jrit
0_lj ¡ rjt0_li¡fRi,jr1(lj)0_lj + rj(li)0_li

+(fRi,j ¡ 1)crirj : (98)

In 2D, the two equations to consider expand to

0 =¡l2i,1¡ l2i,2 + r2i +2li,1t1¡ t21 +2li,2t2¡ t22 (99)

0 =¡fRi,j(_lj,1lj,1 + _lj,2lj,2)ri+(_li,1li,1 + _li,2li,2)rj
+ c(fRi,j ¡ 1)rirj +fRi,j _lj,1r1t1¡ _li,1rjt1
+fRi,j

_lj,2rit2¡ _li,2rjt2 (100)
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and in 3D, they are

0 =¡l2i,1¡ l2i,2¡ l2i,3 + r2i +2li,1t1¡ t21 +2li,2t2
¡ t22 +2li,3t3¡ t23 (101)

0 =¡fRi,j(_lj,1lj,1 + _lj,2lj,2 + _lj,3lj,3)ri
+(_li,1li,1 +

_li,2li,2 +
_li,3li,3)rj

+ c(¡1+fRi,j)rirj +fRi,j _lj,1rit1¡ _li,1rjt1
+fRi,j

_lj,2rit2¡ _li,2rjt2 +fRi,j _lj,3rit3¡ _li,3rjt3:
(102)

Due to the squaring of the equations, one can also expect

there to be added solutions that must be eliminated as

described in Section 7.3.1.

In practice, one will generally measure frequencies

and not ratios. However, taking the ratio can be consid-

ered to be the first step in computing the measurement

function.

7.3.5. Simulation Examples: To demonstrate the re-

sults, we consider a simulation where the polyno-

mial solving algorithms of the previous subsections are

solved using the algorithms of Section 5. Complex solu-

tions are mapped to the real domain as in Section 7.2, so

that the measurement-conversion algorithm of Section

7.1 can be used, whereby multiple polynomial solutions

for each cubature point in the integrals are clustered into

different sets as in Section 6. The cubature points of

Appendix B are used.

Allowing slightly complex solutions, as is the heuris-

tic in Section 7.2, can increase the number of useless

solutions. However, one can discard many of them by

making sure that h(x̂) does not differ “too much” from

the true solution in any one component. Such solutions

will arise due to the squaring of equations in the pre-

vious sections. In such circumstances, these false so-

lutions, when converted into the measurement domain,

will produce measurements with components having the

wrong sign. Again, a simple comparison of the con-

verted solutions to the actual measurements can help

eliminate such false solutions.

In the simulations, we assess the root mean squared

error (RMSE) of the estimates and the normalized esti-

mation error squared (NEES), which, as mentioned in

[23], is a common method of assessing the consistency

of covariance estimates. The RMSE is compared to the

CRLB to determine how well the estimator approaches

the bound. However, if there truly are, for example, two

solutions, then the likelihood function would be bimodal

and the mean would be between the solutions. If the so-

lutions are far apart, then the mean might be far from

either one. Choosing the solution closest to the truth

for analysis effectively introduces a bias and it can be

possible to have RMSE values below the CRLB.

Three scenarios are considered. Sensors considered

in the scenarios are placed at the following latitudes

(degrees), longitudes (degrees) and World Geodetic

System-1984 (WGS-84) ellipsoidal altitudes (meters):

Name Latitude ± Longitude ± Altitude m

s1 20.265901 ¡155:857544 8000

s2 19.878939 ¡155:107727 7500

s3 19.661825 ¡156:091003 6000

s4 20.069960 ¡155:434570 5000

The sensors are in the air around the northern part

of the island of Hawaii. The conversion between the

WGS-84 ellipsoidal coordinates and global Cartesian

coordinates is described in [25]. Also provided are

expressions for unit vectors in the direction of local

East-North and up, which can help when establishing

the heading of the sensors.

In all three scenarios, the true target position is var-

ied over a grid in latitude in the range (18:5±,19:75±) and
longitude in the range (¡156±,¡154:75±). The altitude
of the true target is fixed at 4205 m, which, ignoring

geoid undulations, is approximately the height of the

tallest mountain on Hawaii. It is assumed that all sen-

sors always have direct lines of sight to the target and

atmospheric refraction and diffraction over the terrain

are neglected. Of course, Scenarios 2 and 3 would be

more realistic if the target were fixed to the ground as

the target is assumed to be a stationary emitter in such an
instance. However, the inclusion of terrain data would

needlessly complicate the example.

Three scenarios are considered:

1) The first scenario is representative of multiple air-

craft working to localize a cooperative stationary

emitter. In this instance, only Sensors s1 and s2 are

used. However, now a velocity for Sensor 2 is pro-

vided and the emitter is assumed stationary. The

range measurements are to and from Sensor s1 (a

round-trip monostatic measurement) and from Sen-

sor s1 to s2. The range-rate measurement is made by

Sensor s2, which is traveling 300 m/s in level flight

45± East of North. The unit vectors for the directions
can be obtained as in [25]. The standard deviation of

the range measurements is 1 m and the standard devi-

ation of the range-rate measurement is 0.1 m. There

might be a scenario where a sensor pings a target

with a repeater and the target pings back. In such

an instance, the measured ranges would be assumed

to be derived from measured time delays minus the

time it takes the repeated to respond. Fifty Monte

Carlo runs are performed and the grid of target lo-

cations used for the plots is 15£ 15 in latitude and
longitude.
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Fig. 2. The RMSE in meters and NEES of the simulations in Scenario 1 (range and emitter range-rate measurements) on a 15£ 15 grid
shown on top of a map after 50 Monte Carlo runs using Bertini. Also, the square root of the trace of the approximate CRLB (in meters, on a

fine grid) is shown for comparison to the RMSE. The yellow dots represent locations of the sensors. The island is about 120 kilometers

wide. The color bar for the NEES is clipped. The color scale for the CRLB and RMSE are the same. (a) RMSE. (b) NEES. (c) CRLB.

2) The second scenario is a slight variant on an “easy”

scenario. All four sensors are used. Three of them

produce TDOA measurements, while a bistatic path

is given between a pair of them. A standard devi-

ation of 10 m is used for the range measurement.

For TDOA measurements, a standard deviation of

3:3356£ 10¡8 s is used; this equals 10 m/c seconds,
where c= 299,792,458 m/s is the speed of light in a

vacuum, which was used as the transmission speed

in the simulation. The TDOA measurements are be-

tween Sensors s1 and s2 and between Sensors s1 and

s3. The bistatic range measurement is between Sen-

sors s3 and s4. This scenario might occur when one

tries to fuse measurements of an emitter from passive

sensors with an active radar range measurement. The

altitudes of the aircraft imply detections taken by air-

craft. Two hundred Monte Carlo runs are performed

and the grid of target locations used for the plots is

15£ 15 in latitude and longitude.
3) The final scenario is a case where all four sensors

are moving and only make frequency measurements

as they are assumed to not know the transmission

frequency of the target, which is an emitter. All sen-

sors are moving level with respect to the WGS-84

reference ellipsoid. Sensors 1 and 2 are moving at

300 m/s with Sensor s1 going 45
± west of North and

Sensor s2 going 45
± East of North. Sensors 3 and 4

are traveling, respectively, East and North at 250 m/s.

The transmission frequency of the emitter is 8 GHz

(X-Band) and the standard deviation of the measure-

ments is 1 Hz. Note that it does not matter which fre-

quency ratios from the four frequency measurements

are used in the multivariate polynomial solver (given

the individual frequency measurements) as long as

none of the ratios are redundant. Fifty Monte Carlo

runs are performed and the grid of target locations

used for the plots used is 15£ 15 in latitude and
longitude.

The three scenarios do not appear to be solved by

algorithms that are already present in the literature,

even though they represent simple uses of multivariate

polynomial solving algorithms and cubature integration.

The shortest augmenting path 2D assignment algo-

rithm of [20] was used for clustering converted cuba-

ture points, as discussed in Section 6. Bertini, PHCpack

and the certified solver in Macaulay2, called from Mat-

lab, were considered as polynomial solvers. However,

Macaulay2’s certified solver tended to be too slow and

failed much more than the others, so it was not used

in any of the simulations plotted here (failure being de-

fined as no solutions being produced or the only solu-

tion being over 1000 km from the true target). PHC-

pack was used for Scenario 2, as it is easier to par-

allelize in Matlab. Bertini was used for the other two

scenarios. When using Bertini, the options Security-
MaxNorm, EndpointFiniteThreshold and PathTrun-
cationThreshold were all set to 109 to improve relia-
bility and FinalTol was set to 10¡14.
Figure 2 shows the RMSE, NEES, and CRLB of

Scenario 1. Bertini was used as the polynomial solver

as PHCpack was found to occasionally fail. The 95%

bounds for the NEES are 0.787 and 1.239 (based on the

inverse cumulative distribution function [CDF] of the

chi-squared distribution with 150 degrees of freedom).

Averaging the MSE over all of the cells in the plot and

then taking the square root, one gets an accuracy of

1512 m, whereas averaging the trace of the CRLB over

the same points and taking the square root, one gets

a bound of 1276 m, indicating that the estimates are

good, but do not quite hit the CRLB. The median of

the NEES values in all the cells is 0.9931, indicating

good covariance consistency, though the mean is 1.58.

This discrepancy is explained by two outlier points, one

having a value of 103.18 and another a value of 14.43.

The RMSE, NEES, and CRLB of Scenario 2 are

shown in Fig. 3. PHCpack was used as the polynomial

solver. The 95% bounds for the NEES are 0.890 and

1.116, which as discussed in [23] represent the solution

of the inverse CDF of the chi-squared distribution with

600 degrees of freedom evaluated at 0.025 and 0.0975
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Fig. 3. The RMSE in meters and NEES of the simulations in Scenario 2 (TDOA and range measurements) on a 15£ 15 grid shown on top
of a map after 200 Monte Carlo runs using PHCpack. Also, the square root of the trace of the CRLB (in meters, on a fine grid) is shown for

comparison to the RMSE. The yellow dots represent locations of the sensors. The NEES is generally within the 95% bounds for consistency.

The color scale on the CRLB was capped at 2£ 104 m even though it goes much higher. The RMSE is below the CRLB in some instances,

because the true likelihood is multimodel and by choosing the solution nearest the truth for analysis, we bias the estimator as seen in Figure

4. (a) RMSE. (b) NEES. (c) CRLB.

Fig. 4. The magnitude of the bias of the estimates in Scenario 2.

The bias is caused by only selecting the closest hypothesis for

comparison to the RMSE. The true distribution is multimodal and as

the modes separate, the bias becomes larger. Additionally, due to the

estimator itself not being guaranteed unbiased (due to the projection

of complex results into the real domain as in Section 7.2), the

estimator (independent of the different modes) is not completely

guaranteed to be unbiased. This complicates the analysis of the

results.

and divided by 600 (the dimensionality times the num-

ber of Monte Carlo runs). Averaging the MSE over all

of the cells in the plot and then taking the square root,

one gets an accuracy of 803 m, whereas averaging the

trace of the CRLB over the same points and taking the

square root, one gets a bound of 143,773 m, with most

of the contribution coming from the lower-left part of

the viewing region. Initially, one would have to assume

that something is wrong as the RMSE of an unbiased

estimator cannot be lower than the CRLB. However, as

seen in Fig. 4, one can see that the estimator is very

biased. The maximum bias of the estimator is 1,214 m.

This is an artifact of only choosing the best estimate

to use for the analysis, whereas the true distribution is

multimodal.

The median NEES of the estimates is 1.28, which is

slightly inconsistent, though not very much so. On the

other hand, the mean is 5,955. Again, as in Scenario 1,

this is caused by a number of outliers, in this case 13

out of the 225 grid points.

The RMSE, NEES, and CRLB of Scenario 3 are

shown in Fig. 5 . The third scenario is the most difficult:

received frequency-only localization. This is a problem

that is subject to finite-precision errors due to the num-

ber of digits that must be carried in frequency mea-

surements that go into frequency ratios. This is also the

slowest scenario for the multivariate polynomial solvers.

A single solution of the polynomial system without any

type of threading/parallelization takes about 1.25 s in

PHCpack and 64 s in Bertini.

Despite the difficulty of the problem and the slow

run times of the solvers, one can see in Fig. 5 that

over much of the region, estimates better than 10 km

accuracy are possible. This suggests that with additional

refinement and optimization, one should be able to

obtain a usable estimation routine.

7.4. Equations for Dynamic Estimation

We provide equations for different measurement

types when estimating the state of a target using non-

simultaneous measurement. These measurements will

typically consist of position and velocity components,

though other components can be included as well. The

state is denoted by x.

Due to the number of terms present, the equations

are written in vector form rather than expanded into

individual terms as in the previous section. It is noted

how manipulations of the equations might induce false

solutions that must be discarded.

7.4.1. TDOA Measurements: For non-simultaneous

TDOA measurements, the measurement equation is es-

sentially the same as in (68), except the state x must be
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Fig. 5. The RMSE in meters and NEES of the simulations in Scenario 3 (only frequency measurements—unknown carrier frequency) on a

15£ 15 grid shown on top of a map after 50 Monte Carlo runs using PHCpack, which did fail on a single Monte Carlo run. On a few test
points, Bertini was much slower, but also performed better. Also, the square root of the trace of the CRLB (in meters, on a fine grid) is

shown for comparison to the RMSE. Color bars in all three plots are clipped. Though the RMSE is often less than 10 km, possibly providing

usable estimates, it is worse than the CRLB and there are often bad estimates. However, it is the first instance of frequency-only track

initiation in the literature when the transmission frequency is completely unknown to the receivers. Using a better polynomial solver along

with higher-order cubature points is expected to improve performance. (a) RMSE. (b) NEES. (c) CRLB.

used in the equations, taking into account the propaga-

tion of the state to the time of the measurement. Using

the notation of Section 2, this is

TDOA=
1

c
(kFhx¡ l1k¡kFht¡ l2k): (103)

The same simplifications can be performed as in Section

7.3.1, except in this case y= Fhx¡u. This means that
(79) becomes

0 = ((Fhx¡u)0v)2¡ ±2((Fhx¡u)0(Fhx¡u) + kvk2)
+ ±4 (104)

0 = (x0F0hv¡u0v)2¡ ±2x0F0hFhx+2±2u0Fhx¡ ±2kuk2

¡ ±2kvk2 + ±4 (105)

0 = (x0F0hv)
2¡2(x0F0hv)(u0v)¡ ±2x0F0hFhx

+2±2u0Fhx¡ ±2kuk2¡ ±2kvk2 + ±4 + (u0v)2:
(106)

Again, as in Section 7.3.1, the squaring involved in

manipulating the equations can add extra solutions that

must be eliminated.

7.4.2. Bistatic Range Measurements: Including the ef-

fects of non-simultaneous measurement times, the range

measurement equation is as in (82):

r = kFhx¡ l1k+ kFhx¡ l1k: (107)

As with non-simultaneous TDOA measurements, the

non-simultaneous range measurements are the same as

in Section 7.3.2 except y= Fhx¡u. The final equation
thus is thus (106), where it is noted that ± = r=2 unlike

in the TDOA case which includes scaling with c.

7.4.3. DOA Measurements: Given u¡ v components
forming a DOA measurement, the measurement equa-

tion of (11) is

uuv =
1

kFhx¡ lk
Mu(Fx¡ l): (108)

As in the previous sections, various manipulations and

squaring can eliminate the non-polynomial terms. Here,

we use a Hadamard product (element-by-element mul-

tiplication) via the binary operator ± to help eliminate
the square root term:

uuvkFhx¡ lk=Mu(Fx¡ l) (109)

uuv ±uuv(Fx¡ l)0(Fx¡ l) = (MuFx¡Mul)

± (MuFx¡Mul): (110)

The final two equations are expressed in vector form as

0= (uuv ±uuv)x0F0Fx¡ (MuFx) ± (MuFx)

¡2(uuv ±uuv)x0F0l+2(MuFx) ± (Mul)

+ (uuv ±uuv)klk2¡ (Mul) ± (Mul): (111)

8. MAXIMUM-LIKELIHOOD/LEAST-SQUARES TRACK
INITIATION

Unlike in Section 7, the case where the measure-

ment function Z= h(x) is not bijective is considered.

This can either occur if not enough measurements are

available for the target to be observable (an instance

that is not considered here) or if extra (redundant) mea-

surements are given. For example, two simultaneous

non-collocated bistatic range and DOA measurements

offer more degrees of freedom than are necessary to

uniquely specify the target position. In such an instance,

we would like to find the ML/LS estimate.

The likelihood of the measurements is assumed

Gaussian distributed, NfZ; Ẑ,Rg in the local coordinate
system of the receiver. As is most common, we shall as-

sume that the different measurements are independent,

though this only affects the indexation used below and

not the final solution. Let ẑi denote the ith measurement

and Ri the covariance matrix associated with the ith
measurement. Thus, the ith measurement is distributed

Nfz; ẑi,Rig. The joint PDF of the measurements is the
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product of the individual independent distributions. The

ith distribution conditional distribution of x is

p(x j ẑi) = j2¼Rij¡1=2e¡(1=2)(hi(x)¡ẑi)
0R¡1
i
(hi(x)¡ẑi) (112)

where zi = hi(x) is the transformation of x from the

state domain into the measurement domain of the ith

measurement. This transformation is assumed to be

unique. The total likelihood for N measurements is

p(x j ẑi) =
nY
i=1

p(x j ẑi): (113)

To obtain the ML estimate, we can take the logarithm

of the likelihood, discard constant terms and flip the

sign of the result to get the following LS optimization

problem in terms of the sum of Mahalanobis distances

x̂ML = argminx

NX
i=1

(hi(x)¡ ẑi)0R¡1i (hi(x)¡ ẑi): (114)

The minimum of the right-hand side of the cost function

is at a point where the gradient with respect to x is

zero. This leads to the equation for the ith component of

the gradient, which corresponds to the partial derivative

with respect to the ith component of x to be

0 =

NX
i=1

(hi(x)¡ z)0R¡1i
μ
@

@xi
hi(x)

0
¶
: (115)

If hi(x) is a polynomial, then all N equations (115) rep-

resent a system of multivariate polynomials. In Section

2, it is shown how common seemingly non-polynomial

measurement equations, such as range and DOA, can

be transformed into polynomials by adding additional

variables and equations to the system.

However, the polynomial systems arising from these

types of LS problems are much more difficult than

those arising from simple measurement conversion as in

Section 7. This can be demonstrated just by considering

the use of range-only measurements.

One term in the sum in (114) for a bistatic range-

only measurement between Sensors i and j, designated

as Ci,j , when estimating a full target state is given by

Ci,j =
1

¾2r
(rM ¡kFhx¡ lik¡kFhx¡ ljk)2 (116)

where ¾2r is the variance of the measurement. The

gradient with respect to the elements of x is

rxCi,j =¡
2

¾2r
(rM ¡kFhx¡ lik¡kFhx¡ ljk)

¢
Ã
F0hFhx¡F0hli
kFhx¡ lik

+
F0hFhx¡F0hlj
kFhx¡ ljk

!
:

(117)

Introducing the additional equations in terms of ri, rj , r̃i
and r̃j , one gets

r2i ¡kFhx¡ lik2 = 0 (118)

r2j ¡kFhx¡ ljk2 = 0 (119)

r̃iri¡ 1 = 0 (120)

r̃jrj ¡ 1 = 0 (121)

and one can write (117) as

rxCi,j =¡
2

¾2r
((F0hFhx¡F0hlj)(r̃j(rM ¡ ri)¡ 1)

+ (F0hFhx¡F0hli)(r̃i(rM ¡ rj)¡ 1)) (122)

which is a set of simultaneous multivariate polyno-

mial equations. of order three. For a simple localization

problem, where the target state only consists of posi-

tion components in 3D, the gradient (122) represents

three equations plus an additional two to four equations

depending on whether previous measurements share a

common transmitter or receiver in the bistatic path.

For the worst-case scenario, where each measurement

takes a different bistatic path without any common re-

ceivers or transmitters, there is a total of three third-

order equations and six second order equations lead-

ing to a Bézout’s number of 1728. In contrast, using

the measurement-conversion approach of Section 7.3.2,

one simply has three second-order equations, leading to

a Bézout’s number of 6. Due to the high computational

complexity of the ML/LS method of target-state estima-

tion, detailed examples are not considered here, though

a number are presented in [66].

As an example of the difference in speed of the

measurement-conversion approach versus the LS

method, in [66] a TDOA localization problem was given

with

l1 =

264¡9:088503107295082¡3:592899795686701
11:379375304771440

375 (123)

l2 =

264¡8:73707188457857212:184039601570143

0:461252502515841

375 (124)

l3 =

264¡10:997619107424038¡0:372458566000544
10:193804421541278

375 (125)

l4 =

264¡12:099924003565013¡2:341482530709476
8:550397573582972

375 (126)
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where ½i,j = TDOAi,j=c is the range difference between

Sensor i and Sensor j and

½1,2 =¡6:634727887894795 (127)

½1,3 =¡1:197770770524833 (128)

½1,4 =¡2:553916244191934: (129)

That is, they use the LS estimation method even though

they could use the measurement-conversion method of

Section 7.3.1. They reported that it took about 3 s for

their program, HOM4PS-2 to solve the problem on

a computer with a 3 GHz Intel Core 2 Duo proces-

sor. However, when we solved the same polynomial

system using the measurement-conversion method of

Section 7.3.1 with the PHCpack solver in black-box

mode as called from Matlab without parallelization on a

2.93 GHz Intel Xeon processor, the problem was solved

in approximately 0.04 s, not counting the time it takes

to formulate the problem within Matlab. That is a 7.5-

fold improvement in speed just by reformulating the

problem, even though a purportedly slower polynomial

solver was used.

9. CONCLUSIONS

Track initiation utilizing all common (range, DOA,

TDOA, range-rate, frequency-ratio) refraction-free (or

corrected) measurement types from one or more sensors

can be performed utilizing simultaneous multivariate

polynomial solving algorithms. Though many authors

focus on directly solving ML/LS problems, as described

in Section 8, the systems of multivariate polynomials re-

sulting from such an approach have very high Bézout’s

numbers and thus are very slow to solve. This paper

presents a less computationally demanding approach via

the heuristic measurement-conversion algorithm of Sec-

tion 7, which with the use of cubature integration can

produce covariance matrices that are often consistent,

barring occasional outliers. Previous polynomial-based

techniques have not addressed as wide a variety of prob-

lems and have overlooked the computation of covari-

ance matrices, which are essential in multivariate track

initiation.

Accurate measurement conversion for track initia-

tion in 3D was demonstrated in three simulation sce-

narios that do not appear to exist in the literature. These

are

1) The use of two bistatic range measurements and

one emitter range-rate measurement by two moving

sensors to localize a stationary emitter.

2) The use of two TDOA measurements and one

bistatic range measurement to localize a cooperative

target with both active and passive measurements.

3) The use of four frequency measurements by four

moving sensors to localize a non-cooperative station-

ary emitter.

Multivariate polynomial expressions for equations

needed for full target-state estimation (position and

velocity) using a number of dynamic scenarios were

also provided. It is worth noting that despite occasional

outliers for covariance matrix estimates, the algorithms

never failed when using Bertini as the multivariate

polynomial solver. Thus, the approach in this paper is

significantly better suited for use in real systems than the

more general heuristic probability-1 homotopy method

of [26], which occasionally failed in simulation.

Whereas multivariate polynomial solvers have tradi-

tionally been primarily of interest to the robotics com-

munity, it is clear that such algorithms have wide ap-

plication for active and passive target-track initiation.

With optimization and parallelization of such methods,

it is likely that target-track initiation with generic com-

binations of multistatic measurement types can be per-

formed in real time at significantly lower hardware cost

than using brute-force techniques.
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APPENDIX A SOLVING A BIVARIATE PAIR OF
SECOND-DEGREE EQUATIONS

Here, we present a direct method of solving simulta-

neous second-order bivariate equations. Though faster,

it is often slightly less numerically accurate than using

a homotopy-based algorithm for solving for the roots of

such a system.

Given a general pair of second-order bivariate poly-

nomials,

a6 + a5x+ a4x
2 + a3y+ a2xy+ a1y

2 = 0 (130)

b6 +b5x+ b4x
2 + b3y+ b2xy+ b1y

2 = 0, (131)

one can eliminate x to get a univariate equation of the

form

c0 + c1y+ c2y
2 + c3y

3 + c4y
4 = 0 (132)

having coefficients (pay attention to parentheses)

c0 = a
2
6b
2
4 + b6(a

2
5b4¡ a4a5b5 + a24b6)

+ a6(¡a5b4b5 + a4(b25 ¡ 2b4b6)) (133)

c1 = a
2
5b3b4 + a6b4(2a3b4¡ a2b5) +2a24b3b6
¡ a5(a6b2b4 + a4b3b5 + a3b4b5 + a4b2b6¡ 2a2b4b6)
+ a4(¡2a6b3b4 +2a6b2b5 + a3b25 ¡ 2a3b4b6¡ a2b5b6)

(134)
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c2 = b4(a
2
5b1 + (a

2
3 +2a1a6)b4¡ a5(a3b2¡ 2a2b3 + a1b5)

¡ a2(a6b2 + a3b5) + a22b6) + a24(b23 +2b1b6)
¡ a4(¡a6b22 + a5b2b3 +2a6b1b4 +2a3b3b4 + a5b1b5
¡ 2a3b2b5 + a2b3b5¡ a1b25 + a2b2b6 +2a1b4b6)

(135)

c3 = 2a
2
4b1b3¡ a4(a5b1b2¡ a3b22 + a2b2b3 +2a3b1b4

+2a1b3b4 + a2b1b5¡ 2a1b2b5)
+ b4(¡a1a5b2 + a22b3 +2a1a3b4
+ a2(2a5b1¡ a3b2¡ a1b5)) (136)

c4 = a
2
4b
2
1 + b4(a

2
2b1¡ a1a2b2 + a21b4)

+ a4(¡a2b1b2 + a1(b22 ¡ 2b1b4)): (137)

Though explicit formulae are available for solving

fourth-order polynomial equations, one would expect

many of them to be numerically unstable, because, as is

shown in [36, Ch. 24.3.3], the explicit solution of cubic

polynomial equations is numerically unstable. For sim-

plicity, we solve the equation using the roots function in

Matlab, which finds the eigenvalues of a matrix whose

eigenvalues coincide with the roots of the equation.

Given y, one can substitute back into (130) to get x

via the quadratic formula:

x=
¡a5¡ a2y§

p
(a5 + a2y)

2¡ 4a4(a6 + a3y+ a1y2)
2a4

:

(138)

Substituting into (131), one similarly gets

x=
¡b5¡ b2y§

p
(b5 + b2y)

2¡ 4b4(b6 + b3y+ b1y2)
2b4

:

(139)

The correct value of x to use with y solved from (132)

is the one that is common to both equations. With

finite precision, just choose the pair of solutions that

are closest and average them. Note, however, that such

a method will fail to find all roots if there are repeated

roots in y. For example, if (1,2) and (2,2) were both

solutions, then only one of them would be found, even

if it is known that the root in y is repeated, because both

y values would map to the same x value with the above

method. Thus, if two y values are equal, there must be

a special case where the repeated one takes the second

closest pair of solutions.

As an example, consider the system of equations

0 =¡x2 +2xy+ y2 +5x¡ 3y¡ 4 (140)

0 = x2 +2xy+ y2¡ 1: (141)

The exact roots are (4,¡5), (1,0), (3,¡2), (0,¡1). Us-
ing the above method in Matlab (which uses double-

precision arithmetic), one obtains the correct solutions,

where the greatest magnitude difference in any com-

ponent from the true value is about 7:1£ 10¡15. When
solving using PHCpack, which unlike Bertini does not

offer the option of extended precision arithmetic, the

greatest magnitude difference in any component from

the true value is about 2:8£ 10¡17.

APPENDIX B THE CUBATURE POINTS USED IN THE
SIMULATIONS

As mentioned in Section 3, cubature points and

weights are needed to efficiently numerically evaluate

integrals involving polynomials to a high degree. Here,

we choose to use the cubature points of Er
2

n 5-3 on page

317 of [65]. The points scaled for a standard normal

distribution are also used in [23]. Here, we reproduce

the listing of the points from [23] for the standard

normal distribution:

Fifth-Order Cubature Points and Weights

Weight (!i) Point (»i)

4

(d+2)2
[§a]

(d¡2)2
2d(d+2)2

(§b,§b, : : : ,§b)

The points are given as shown above, where

a=

r
d+2

2
b =

r
d+2

d¡ 2 , (142)

and d is the dimensionality of the points generated. The

§ indicates that all possible combinations of negative

and positive elements should be used. The bracket no-

tation for the first set of points indicates that all pos-

sible vectors with that single nonzero element should

be generated. There are 2d points of the first type and

2d points of the second type. These points can be used

for integrals involving an arbitrary Gaussian weighting

with d > 2.

To use the above points and weights with a normal

distribution having mean ¹ and covariance matrix §,
each of the points should be transformed using

»transformedi = ¹+§1=2»i (143)

where the square root of the covariance matrix is taken

to be a lower-triangular Cholesky decomposition of the

matrix rather than a true square root (the chol command
in Matlab with the ‘lower’ option).
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